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Abstract—In this paper, we propose a novel regularized sparse
coding approach for template-based unconstrained face verifi-
cation. Unlike traditional verification tasks, which require the
evaluation on image-to-image or video-to-video pairs, template-
based face verification/recognition methods can exploit training
and/or gallery data containing a mixture of both images or
videos from the person of interest. The proposed regularized
sparse coding approach addresses the adaptation to training and
gallery data using three steps. First, we construct a reference
dictionary, which represents the training set. Then we learn
the discriminative sparse codes of the templates for verifica-
tion through the proposed template regularized sparse coding
approach. Finally, we measure the similarity between templates.
An efficient algorithm is employed to learn the template regular-
ized sparse codes. Extensive experiments on the template-based
verification benchmark dataset show that the proposed approach
outperforms several state-of-the-art methods.

I. INTRODUCTION

Face identification and verification are two main tasks in
face-based biometrics. Face identification aims to recognize a
person from a set of gallery (images or videos) and match
the closest one to the probe, while verification determines
whether a given pair of images or videos is from the same
subject or not. In this paper, we address the unconstrained face
verification/recognition problem where the face images have
been acquired under significant variations in pose, expressions,
lighting conditions and background.

Numerous methods have been proposed for improving the
performance of face verification systems. Most existing ap-
proaches can be categorized into feature-based and metric
learning-based methods. The first category, which includes
LBP [1], SIFT [2], Fisher vector faces [3] and most recently
the deep features [4], aims to derive robust and discriminative
descriptors to represent face images. The common objective of
the second category is to learn a good metric from the training
data [5], [6], [7]. Some representative methods include cosine
similarity metric learning [8], pairwise constrained component
analysis [9] and logistic discriminant metric learning [10].
While dictionary learning techniques have shown impressive
performance for face recognition [11], [12], [13], [14], [15],
there are only a few reported works for the face verification
problem [16], [17], [18].

Recently, template-based face verification problem has
gained more popularity in computer vision community. The

problem of traditional face verification is to verify whether
two images or videos in a pair belong to the same subject
over image-to-image pairs as in Labeled Face in the Wild
dataset [19], or over video-to-video pairs as in the Youtube
Faces database [20], whereas template-based face verification
performs verification over templates as introduced in [21]. In
this context, a template is a mixture of different media data
such as images or frames sampled from multiple image sets or
video clips from the person of interest. Template representation
is important in real world as it provides more flexibility and
longitudinal access control of data from subjects.

In this paper, we tackle the problem of template-based
face verification by taking advantage of dictionary learning
techniques. This is due to the fact that image or video
samples could be well represented by a learned dictionary and
corresponding sparse codes. Yet dictionary learning methods
have not been exploited for template-based face verification.
Two issues arise when existing dictionary-based methods such
as [17] are used for template-based face verification. First, the
dictionary learned by random sampling of the training data is
not able to adequately represent the training set of face tem-
plates when several hundreds subjects are involved. Second,
the sparse codes of all the samples from the same template
are independently calculated, even though these samples are
from the same subject. This may degrade the performance,
especially when each template has significantly varying num-
ber of samples acquired from unconstrained environments. It
is better to exploit this intra-class relationship among samples
from the same template.

To overcome the limitations discussed above, we propose
a novel template regularized sparse coding framework for
template-based unconstrained face verification. The proposed
approach consists of three steps. First, we construct a reference
dictionary to adequately represent the training set. Then we ex-
ploit the intra-class relationship of the template by regularizing
the sparse codes of the samples in one template to be similar,
which results in more discriminative sparse codes. Finally, we
measure the similarity between templates. To summarize, we
make the following contributions:
• We are the first to propose a dictionary learning frame-

work for template-based face verification problem.
• Our method learns a reference dictionary, which ad-
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equately represents the training set. Furthermore, we
construct two template adaptive dictionaries to adapt the
pair of templates.

• We propose a novel template regularized sparse coding
method, which is able to capture the information in
the samples in one template. An efficient algorithm is
employed to learn the discriminative sparse codes.

• We demonstrate that the proposed framework outper-
forms several state-of-the-art methods on benchmark
dateset for template-based face verification.

II. RELATED WORK

Template-based Face Verification: Several state-of-the-
arts methods for template-based face verification are briefly
reviewed [22], [23], [24]. [22] addressed the template-based
face verification problem through Joint Bayesian Metric Learn-
ing [25], [26] of deep CNN features. The triplet similarity
embedding method [23] learned an embedding matrix, which
projects the original feature to a low-dimensional space. Tem-
plate adaptation [24] learned two linear SVM classifiers, where
each of them is designed using the positive features from one
template in the pair to the large negative features from the
training set. Then the final similarity score is calculated by
fusing the two SVM margins evaluated on the other mated
template.

Dictionary Learning: Dictionary learning has shown im-
pressive performance in face recognition [11], [12], [13], [14],
[15]. However, only a few works are reported for the face
verification problem [17], [16], [18]. One of the first meth-
ods [17] which adopted dictionary learning for face verification
measured the similarity between the pair of images over the
sparse codes using a reference dictionary. Subsequently, this
work was extended by learning the local sparse codes from the
patches of the face images. Although effective, learning patch-
based sparse codes is sensitive to local perturbations. [16]
generalized the dictionary learning framework to verification
problems by adding a pairwise constraint. However, it suffers
from high computational complexity. Furthermore, all these
methods addressed the verification problem in image-to-image
settings and are not directly applicable to template-based face
verification [21].

III. PROPOSED METHOD

In this section, we provide a detailed description of our
template regularized sparse coding approach for the template-
based face verification problem.

A. Task and Overall Approach

The definition of template-based face verification can be
simplified as follows: given a training set and a pair of
templates from the test set, the objective is to verify whether
the pair of templates are from the same subject or not.

Our approach for template-based face verification that (1)
learns a reference dictionary DR (with the help of hierarchical
clustering), and (2) learns more discriminative sparse codes

for verification purposes through the proposed template regu-
larized sparse coding method, and (3) defines two distance-
measures between template pairs through reference score and
template adaptive score for computing the final similarity
score.

The proposed approach consists of three steps. First, we
learn two types of dictionaries: a reference dictionary and
template adaptive dictionaries. The reference dictionary is
learned only from the training set, which is disjoint from any
test templates. The reference dictionary is used for learning
the sparse representations of the test templates. Two template
adaptive dictionaries are constructed by augmenting the refer-
ence dictionary with each template in the test pair respectively.
Adding only one template to construct the template adaptive
dictionary would result in adapting the reference dictionary to
better represent the other templates from the same subject.

Second, we perform sparse coding both on the reference
dictionary and template adaptive dictionaries to obtain two
types of sparse representations. In particular, we regularize
the sparse codes of the samples in one template of the test
pair to be similar to each other.

Third, by using the two sparse codes obtained as discussed
above, we compute two different similarity scores: reference
score and template adaptive score. The reference score is
defined as the similarity between the sparse codes of two
templates with respect to the reference dictionary. Template
adaptive score measures the difference between two types of
sparse codes of each template in the pair with respect to two
types of dictionaries.

The motivation behind the template adaptive score is that,
if two templates in a pair are from the same subject, then
the sparse coding coefficients of samples from one template
corresponding to the augmented part (the added dictionary
atoms from the other template) will have a significantly high
value, while other coefficients corresponding to the reference
dictionary will be smaller. On the other side, if the two
templates are not from the same subject, the regularized
sparse codes of two templates will not change significantly.
Therefore, a higher template adaptive score indicates that the
template pair, very likely comes from the same subject.

We first present the notations used in the rest of paper. Let
X = [x1, ...,xP ] ∈ Rd×P be the general template data matrix,
where P is the total number of samples in the template (P
varies from template to template). Each xi ∈ Rd, 1 ≤ i ≤
P is the feature encoded from image or video frames in the
template with unit l2-norm. We denote the training set as T ,
and a pair of templates XA = [xA

1 , ...,x
A
PA

] ∈ Rd×PA and
XB = [xB

1 , ...,x
B
PB

] ∈ Rd×PB from the test set.

B. Reference Dictionary and Template Adaptive Dictionaries
Learning

The first step in the method is to learn a reference dictionary.
Let n be the number of subjects in the training set and ni be
the number of templates from subject i(∈ [1, n]). We define
the data matrix Ti = [Xi

1, ...,X
i
ni
] to represent subject i,

where Xi
j(j ∈ [1, ni]) is the j-th template from person i.
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Algorithm 1 Adaptive selection of ki representative samples
Input: Training data Ti = [Xi

1, ...,X
i
ni
] from subject i, stopping

threshold τ .
Initialize: k = 1
while not converged do

Increase k to k + 1
Find k mediods {ci1, ..., cik} and corresponding clusters
{Ci1, ..., Cik} by using “k-mediods” clustering algorithm [27].
Compute r as follows:

r = max
1≤m≤k

max
xi
j∈C

i
m

‖xi
j − cim‖2 (1)

Check the convergence condition: r ≤ τ
end while
Output: ki and representative samples {ci1, ..., ciki

}

Consequently, we represent the entire training set by T =
[T1, ...,Tn].

A good reference dictionary should be able to represent the
training set with a compact set of dictionary atoms. To make
the reference dictionary adequately represent the training set,
we perform hierarchical adaptive clustering on the training set.
More specifically, for each subject data matrix Ti, i ∈ [1, n],
we adaptively determine the value of ki and select ki most
representative samples by alternating the following two steps:
(a) Increasing k to k+ 1 (b) Applying the “k-medoids” algo-
rithm [27] on Ti until the stopping criteria in (1) is satisfied.
The alternating procedure is illustrated in Algorithm 1.

After we select ki representative samples from Ti, i ∈ [1, n]
subject by subject, the reference dictionary DR is constructed
by concatenating all the representative samples learned in
Algorithm 1, i.e. DR = [c11, ..., c

1
k1
| ... |cn1 , ..., cnkn

]. We can
rewrite the reference dictionary as DR = [dR

1 , ...,d
R
N ] ∈

Rd×N , where N = k1 + ...+ kn is the total number of atoms
(columns) in the dictionary.

Furthermore, given a test pair of templates XA =
[xA

1 , ...,x
A
PA

] ∈ Rd×PA and XB = [xB
1 , ...,x

B
PB

] ∈ Rd×PB ,
we construct two template adaptive dictionaries DA, DB by
augmenting the reference dictionary with samples from each
template as follows: DA = [DR|XB ] ∈ Rd×(N+PB) and
DB = [DR|XA] ∈ Rd×(N+PA).

C. Template Regularized Sparse Coding

In this section, we present our template regularized sparse
coding algorithm for the reference dictionary DR and template
adaptive dictionaries DA and DB . We learn the sparse codes
of the samples in one template by regularizing them to be
similar as they are all from the same subject. For simplicity
of notation, we drop the superscript in DR, DA and DB and
denote the given dictionary as D. Let the template data matrix
be X = [x1, ...,xP ] ∈ Rd×P . The template regularized sparse

codes are obtained as follows:

Z∗ = argmin
Z

P∑
i=1

(‖xi −Dzi‖22 + λ1‖zi‖1 + λ2‖zi‖22)

+
β

2

P∑
i,j=1

(‖zi − zj‖22wi,j)

(2)

where Z = [z1, ..., zP ] are the corresponding sparse codes
of X and λ1, λ2, β are the regularization parameters. The
term ‖zi‖1 is the sparsity regularization term and the term
‖zi‖22 ensures the stability of the solution as in [28]. The last
term is called the template regularization term, which sums
the weighted difference of sparse codes of any two samples
in the template. Let W be the matrix with entry wi,j in the
i-th row and j-th column.

Constructing Matrix W: Given the sparse codes zi and
zj of any two samples xi and xj , wi,j is defined as follows:

wi,j =

{
e−

1
2‖xi−xj‖22 , if i 6= j

0, otherwise
(3)

It is inversely proportional to the Euclidean distance between
their original feature (i.e. ‖xi−xj‖2). It means that when two
samples are very close or similar in the original feature space,
the penalty associated with the difference of their sparse codes
will be large. As the pair of templates could have different
template size, in order to reduce the effect of the template
size, we further normalize each column in W by its l2-norm.

Optimization: We now discuss the optimization of (2).
Equation (2) is rewritten as

Z∗ = argmin
Z

P∑
i=1

(‖xi −Dzi‖22 + λ1‖zi‖1 + λ2‖zi‖22)

+ β Tr(ZTZL)

(4)

where L is the Laplacian matrix L = A −W and A is a
diagonal matrix whose diagonal elements are the sum of row
elements of W, i.e. ai,i =

∑P
j=1 wi,j .

Motivated by [16], [29], we optimize zi in a column by
column fashion. Given dictionary D, when updating zi by
fixing other zj(j 6= i), the objective function of (2) with
respect to zi is reduced to:

z∗i = argmin
zi

‖xi −Dzi‖22 + λ1‖zi‖1 + λ2z
T
i zi

+ 2βzTi (ZLi)− βzTi ziLi,i

(5)

The minimization of (5) is a L1-regularized least squares
problem and we compute zi by feature-sign search algorithm
proposed in [29].

The analytical solution of zi could be derived by setting the
first derivative of (5) with respect to zi to be zero:

z∗i = [DTD+(λ2+βLi,i)I]
−1(DTxi−β

P∑
k=1
k 6=i

zkLk,i−
1

2
λθ)

(6)
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where θ is the coefficient sign vector of zi. We choose a
small value of β to ensure that the Hessian matrix [DTD +
(λ2 + βLi,i)I] is positive semidefinite, which guarantees the
convexity of (4).

Thus, we learn four sets of regularized sparse codes of the
templates (XA or XB) with respect to the reference dictionary
DR and the template adaptive dictionary (DA or DB) which
are denoted as follows:

ZA = [zA1 , ..., z
A
PA

] ∈ RN×PA coded with DR

Z̃A = [z̃A1 , ..., z̃
A
PA

] ∈ R(N+PB)×PA coded with DA

ZB = [zB1 , ..., z
B
PB

] ∈ RN×PB coded with DR

Z̃B = [z̃B1 , ..., z̃
B
PB

] ∈ R(N+PA)×PB coded with DB

(7)

D. Reference Score and Template Adaptive Score

After we learn the template regularized sparse representa-
tions using (2), we evaluate how similar the test templates are,
by computing the reference score and the template adaptive
score. The reference score is defined as the average of the
cosine similarity between all the sample pairs from the two
templates as follows:

REF(XA,XB) =
1

PA × PB

PA∑
i=1

PB∑
j=1

cos(zai , z
b
j) (8)

where cos(zAi , z
B
j )(i ∈ [1, PA], j ∈ [1, PB ]) is computed as

the cosine similarity between two sparse codes as in [8]

cos(zAi , z
B
j ) =

(zAi )
T zBj

‖zAi ‖2‖zBj ‖2
(9)

In addition, in order to exploit the full power of the template
regularized sparse codes Z̃A and Z̃B , we also compute the
template adaptive score of the template pair [17]. Following
the notation in (7), let us first define the sample adaptive score
of one sample xA

i in the template XA as

adapt(xA
i ) = 1− cos(zAi , z̃

A
i (1:N)) (10)

where cos metric is defined in (9). Similar to sample zBi in the
template XB , we have adapt(xB

i ) = 1 − cos(zBi , z̃
B
i (1:N)).

Note that the higher sample adaptive score indicates more
significant change from the sparse code.

Therefore, the template adaptive score of the template pair
is computed as:

ADP(XA,XB) =
1

PA × PB

Pa∑
i=1

Pb∑
j=1

1

2
[adapt(xA

i )+adapt(xB
j )]

(11)
Finally, the similarity score of the tested template pair

is computed as the average of the reference score and the
template adaptive score.

IV. EXPERIMENTS

In this section, we present the results of the proposed dic-
tionary approach on the challenging IARPA Janus Benchmark
A(IJB-A) [21] dataset. We will first introduce the dataset and
experimental settings. This is then followed by a discussion
of the experimental results.
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Fig. 1. The average ROC curves of different dictionary learning and sparse
coding strategies for the IJB-A [21] verification protocol over 10 splits

Methods FAR = 0.001 FAR = 0.01 FAR = 0.1
RS-SSC 0.613±0.059 0.824±0.026 0.944±0.007
AL-SSC 0.696±0.057 0.860±0.016 0.950±0.005

RS-TRSC 0.713±0.041 0.869±0.014 0.952±0.006
AL-TRSC(Ours) 0.769±0.038 0.885±0.011 0.955±0.003

TABLE I
VERIFICATION ACCURACY COMPARISON OF DIFFERENT DICTIONARY

LEARNING AND SPARSE CODING STRATEGIES FOR THE IJB-A
DATASET [21]. THE TRUE ACCEPT RATES(TAR) AT FALSE ACCEPT RATE

(FAR) OF 0.001, 0.01 AND 0.1 ARE REPORTED.

A. Dataset and Settings

The IARPA Janus Benchmark A(IJB-A) [21] dataset con-
tains 5, 397 images and 2, 042 videos, which sampled to
20, 412 frames from total 500 subjects. Each subject has
11.4 images and 4.2 video clips on average. The smallest
representation unit of each subject constitutes the template,
which comprises a mixture of still images and sampled video
frames.

The evaluation of verification protocol from IJB-A is over
10 splits. Each split consists of training and testing sets without
any overlapping subjects between them. The test set in one
split contains around 11, 748 pairs of templates (1, 756 genuine
and 9, 992 poster pairs). True Accept Rates(TAP) at different
False Accept Rates(FAR) are reported in the evaluation metric.

In our experiment, the faces are represented with deep
features extracted using the network discussed in [22]. More
specifically, the deep CNN network is trained on the CASIA-
WebFace dataset [30] with non-overlapped 490, 356 face im-
ages of 10, 548 subjects to IJB-A dataset. We use the network
presented in [22] to extract the 320-dimensional feature vector
for each template in training and testing sets. Furthermore,
following the setting in [24], in order to reduce the effect
caused by the unbalanced size of different media (images
or videos) in one template, we compute the mean feature to
represent one video by averaging the features extracted from
the same video clips. Finally, all the features in one template
are normalized to have unit l2-norm, which we call it the
template media average features. The template media average
features are used in all the experiments.
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Fig. 2. The average ROC curves of state-of-the-art and baseline methods for
the IJB-A [21] verification protocol over 10 splits

Methods FAR = 0.001 FAR = 0.01 FAR = 0.1
GOTS 0.198±0.008 0.406±0.014 0.627±0.012
COS 0.586±0.059 0.791±0.052 0.942±0.008
[22] - 0.818±0.037 0.961±0.010

TSE [23] 0.718±0.039 0.855±0.019 0.945±0.005
TA [24] 0.779±0.023 0.889± 0.012 0.955±0.007

AL-TRSC(Ours) 0.769±0.038 0.885±0.011 0.955±0.003
TABLE II

VERIFICATION ACCURACY COMPARISON WITH STATE-OF-THE-ART
APPROACHES FOR THE IJB-A DATASET [21]. THE TRUE ACCEPT

RATES(TAR) AT FALSE ACCEPT RATE (FAR) OF 0.001, 0.01 AND 0.1 ARE
REPORTED.

B. Results and Analysis

We perform two series of experiments to evaluate our
approach for template-based face verification on IARPA Janus
Benchmark A(IJB-A) [21] dataset.

Comparison of Different Dictionary Learning and
Sparse Coding Strategies. To demonstrate the improvement
of our approach (AL-TRSC) over [17] in both dictionary
learning and template regularized sparse coding, we compare
it with three methods:
• Random Sample + Single Sparse Coding (RS-SSC) [17].

We randomly select samples from the training set to
generate the reference dictionary and independently com-
pute the sparse codes of all the samples without the
regularization term in (2).

• Adaptive Leaning + Single Sparse Coding (AL-SSC).
We learn the reference dictionary as described in Sec-
tion III-B, followed by the same sparse coding strategy
above.

• Random Sample + Template Regularized Sparse Cod-
ing (RS-TRSC). We construct the reference dictionary
by random sampling of the training set. However, we
learn the template regularized sparse codes described in
Section III-C

We plot the average ROC curves in Figure 1 of the four
methods for the IJB-A dataset over 10 splits. In addition,
we report the average TAR at FAR= 0.001, 0.01 and 0.1
in Table I. First, our method (AL-TRSC) consistently out-

performs AL-SSC, RS-TRSC and RS-SSC by a large margin.
Compared with RS-TRSC, the reference dictionary, which is
learned adaptively, is able to better represent the training set
than random sampling. The AL-SSC algorithm only learns the
sparse codes of all samples without template regularization.
However, our method regularizes the sparse codes from one
template to be close, which yields more discriminative sparse
codes across template pairs. It is also noted that both AL-SSC
and RS-TRSC achieve improvements over RS-SSC [17]. This
demonstrates that both adaptive reference dictionary learning
and template regularized sparse coding are indispensable for
template-based face verification.

Comparison with State-of-the-art Approaches In order
to evaluate the effectiveness of our approach (AL-TRSC)
for template-based face verification, we further compare it
with several state-of-the-art listed next: Joint Bayesian Metric
Learning [22], Triplet Similarity Embedding (TSE) [23], Tem-
plate Adaptation (TA) [24]. All the methods are implemented
following the algorithm except [22]. The parameters are tuned
based on the settings reported in their papers. We evaluate all
the methods on the template media average features as a fair
comparison, which is the same as the setting in [24]1.

In addition, we also compare it with two baseline methods,
the first one, COS computes the cosine similarity [8] from all
the pair samples of two templates and average them to get the
final similarity score between the two templates. The second
baseline GOTS is from the commercial off-the-shelf matchers
mentioned in the NIST FRVT study [31].

We plot the IJB-A average ROC curves over 10 splits of
TSE [23], TA [24] and COS [8] in Figure 2. Furthermore,
we also report the average TAR at FAR= 0.001, 0.01 and
0.1 in Table II. All the methods [22], [23], [24] and ours
improve the performance over COS and GOTS by a wide
margin. Moreover, it can been seen that our method outper-
forms metric-based methods [22], [23] and achieves results
comparable to [24], which demonstrates the effectiveness of
the proposed approach.

Parameter Sensitivity: In order to evaluate the effects
of the stopping threshold τ in (1) and the hyper-parameters
λ1, λ2, β in (2) of our method, we run different choice of
parameters and plot the TAR with respect to the parameters
at FAR = 0.001 and 0.01 in Figure 3.

Firstly, in Figure 3(a), it can been seen that both AL-
SSC and AL-TRSC exhibit the same tendency with respect
to τ . We observe that as τ decreases from 2.0 to 1.9, the
verification performance improves. It is also interesting to
note that when τ = 1.7, the performance degenerates. With
a large-sized reference dictionary, some atoms selected from
the samples may not be useful for verification, thus affecting
the regularized sparse coding. The final dictionary size is
inverse proportional to the stopping threshold τ , and in order
to balance the time and accuracy, we choose τ ∈ [1.85, 1.95]

1Note that result DCNNft+m+c reported in [22] didn’t use template media
average features, all the other methods TA [24], TSE [23] and COS are
evaluated on the same template media average features
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Fig. 3. The effects of stopping threshold τ , hyper-parameters λ1 and β on IRAPA IJB-A dataset [21].

in all the experiments, which yields the reference dictionary
size to be between 400 and 500.

We also evaluate our method by varying parameters λ1 and
β as shown in Figures 3(b) and 3(c). It is observed that the
performance is more sensitive to the choice of λ1, which is
associated with sparse penalty. Our results are reported by
setting λ1 ∈ [0.08, 0.12] and β = {0.15, 0.1}. In addition,
our approach is insensitive to the regularization parameter λ2,
which is set to 0.05 throughout all the experiments.

V. CONCLUSION

In this paper, we presented a novel template regularized
sparse coding approach for template-based face verification.
First, we adaptively learned a reference dictionary to ad-
equately represent the training set. Then template adaptive
dictionaries are generated by adapting the reference dictionary
with the test template pair. Second, we performed template
regularized sparse coding on all the dictionaries to derive the
discriminative template sparse codes for verification purpose.
Finally, both the reference score and template adaptive score
are used to measure the similarity of the pair templates. We
extensively evaluated our approach on the benchmark IARPA
IJB-A dataset for template-based face verification. The exper-
imental results clearly demonstrate competitive performance
over the state-of-the-art.
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