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Abstract
Domain adaptation (DA) tackles the problem where data from the training set (source

domain) and test set (target domain) have different underlying distributions. In this pa-
per, we propose a novel domain-adaptive dictionary learning framework to generate a set
of intermediate domains. These intermediate domains form a smooth path and bridge the
gap between the source and target domains. Specifically, we not only learn a common
dictionary to encode the domain-shared features, but also learn a set of domain-specific
dictionaries to model the domain shift. The separation of the common and domain-
specific dictionaries enables us to learn more compact and reconstructive dictionaries
for domain adaptation. These dictionaries are learned by alternating between domain-
adaptive sparse coding and dictionary updating steps. Meanwhile, our approach gradu-
ally recovers the feature representations of both source and target data along the domain
path. By aligning all the recovered domain data, we derive the final domain-adaptive fea-
tures for recognition. Extensive experiments on cross-domain face and object recognition
show that our approach significantly outperforms state-of-the-art methods.

1 Introduction
In real world scenarios, the assumption that the training data (source domain) and test data
(target domain) are sampled from the same distribution is often challenged. For instance,
training and testing images may be acquired under different environments, viewpoints and
illumination conditions in application such as face recognition [2, 8], object recognition [13,
14, 15, 26], human detection [31] and video concept detection [10, 11, 32]. Recently, many
works have been proposed to adapt the classifier trained using the source domain data to
perform well on target samples [5, 6, 9, 12, 20, 22, 23, 25, 28, 32]. This is known as
the domain adaptation (DA) problem. In this paper, we focus on the more challenging
unsupervised DA problem where the samples in the target domain are unlabeled. Moreover,
it would be highly desirable for recognition systems to automatically adapt to a different
domain without any additional labeling effort.

Recently, the most promising approaches for the unsupervised DA problem focus on
developing intermediate feature representations [13, 15, 22, 29] along a virtual path con-
necting the source and target domains. [15] generated intermediate subspaces by sampling
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Figure 1: Our dictionary learning framework. The overall learning process consists of three steps:
(1) Dictionary learning in source and target domains. At the beginning, we first learn the common
dictionary DC, domain-specific dictionaries D0 and Dt for source and target domains. (2) Domain-
adaptive sparse coding. At the k-th step, we enforce the recovered feature representations of target data
in all available domains to have the same sparse codes, while adapting the newest obtained dictionary
Dk to better represent the target domain. Then we multiply dictionaries in the k-th domain with the
corresponding sparse codes to recover feature representations of target data Xk

t in this domain. (3) Dic-
tionary updating. We update Dk to find the next domain-specific dictionary Dk+1 by further minimizing
the reconstruction error in representing the target data. Then we alternate between sparse coding and
dictionary updating steps until the stopping criteria is satisfied.

the geodesic path connecting the source and target subspaces on the Grassmann manifold.
Instead of sampling a few intermediate subspaces as in [15], [13] integrated an infinite num-
ber of intermediate subspaces to derive a geodesic flow kernel to model the domain shift.
However, the subspaces obtained using principal component analysis (PCA) in both meth-
ods may not well represent the original data and some useful information for adaptation may
be lost. In order to overcome the limitation of PCA subspaces, a recent work [22] used a
dictionary to represent each domain, as non-orthogonal atoms (columns) in the dictionary
provide more flexibility to model and adapt the domain data.

In this paper, we propose a novel domain-adaptive dictionary learning approach to gen-
erate a set of intermediate domains which bridge the gap between source and target domains.
Our approach defines two types of dictionaries: a common dictionary and a domain-specific
dictionary. The common dictionary shared by all domains is used to extract domain-shared
features, whereas the domain-specific dictionary which is incoherent to the common dic-
tionary models the domain shift. The separation of the common dictionary from domain-
specific dictionary enables us to learn more compact and reconstructive dictionaries for de-
riving domain-adaptive features. All these dictionaries are learned using the procedure illus-
trated in Figure 1. First, we learn a common dictionary DC by minimizing the reconstruction
error of both source and target data. Then combined with the common dictionary, we learn
a set of domain-specific dictionaries by alternating between the following two steps: 1)
domain-adaptive sparse coding: we learn domain-adaptive sparse codes Γ and Z by enforc-
ing the feature representations of the target data to have the same sparse codes in all available
domains. 2) dictionary updating: we update the current domain-specific dictionary to gen-
erate the next domain-specific dictionary such that the reconstruction error of target data is
further minimized. This step not only guarantees that the next domain-specific dictionary
will better represent the target data, but also ensures that the intermediate domains gradually
adapt to the target domain. Finally, we apply domain-adaptive sparse codes combined with
domain dictionaries to construct the final domain-adaptive features for recognition.

Ni et al.’s work in [22] may be the closest to our work in spirit. However, our approach
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differs in the following three aspects: (1) The separation of the common dictionary from
domain-specific dictionaries. We aim to learn both the common dictionary and domain-
specific dictionaries to represent each intermediate domain while [22] used only a single
dictionary to represent each domain. Our approach has two advantages over [22]. First,
our approach can better represent the domain data because the reconstruction error of do-
main data obtained using our method is smaller as demonstrated by Figure 2(c) in Section
4. Second, the domain-specific dictionaries can better model the domain changes because
the domain-shared features are accounted for separately. (2) The regularization of sparse
coding. In each step, we regularize the representation of the target data along the path to
have the same sparse codes, which are further used for dictionary updating in the next step.
However, the sparse codes used in [22] for dictionary updating are only adaptive between
the neighboring domains. Therefore, the sparse representations of target data in [22] are
not domain-adaptive, while the sparse representations in our approach are domain-adaptive.
Moreover, the intermediate domains generated by our approach are smoother and incorpo-
rate the domain change in a better way, which will be verified and discussed in section 4.2.
(3) The construction of final features. We use the domain-adaptive sparse codes across all the
domains multiplied by the dictionaries to represent source and target data, while [22] only
uses the sparse code decomposed with source and target dictionaries respectively to repre-
sent the new features. Therefore, compared to [22], our approach generates more robust and
domain-adaptive features. We make the following contributions:

• We learn a common dictionary to extract features shared by all the domains and a set of
domain-specific dictionaries to encode the domain shift. The separation of the com-
mon dictionary from domain-specific dictionaries enables us to learn more compact
and reconstructive representations for learning.
• We propose a new formulation to incrementally adapt the dictionaries learned from

the source domain to reduce the reconstruction error of target data.
• We recover the feature representations of source and target data in all intermediate do-

mains and extract novel domain-adaptive features by concatenating these intermediate
features.
• We present empirical results for the tasks of object recognition and face recognition

across pose, illumination, and blur variations, that are better than state-of-the-art algo-
rithms.

2 Related Work
Recently, dictionary-based approaches [22, 25, 27] have been proposed for unsupervised
DA. [25] learned a parametric modeled dictionary by aligning dictionaries from both do-
mains. [27] jointly learned the projections of data in two domains, and a latent dictionary
which can represent both domains in the projected low-dimensional space. [22] generated a
set of intermediate domains and dictionaries which smoothly adapt the source domain to the
target domain.

Another fruitful line of work is the subspace-based approaches [12, 13, 15, 28, 29]. [13,
15] created the intermediate domain subspaces along the geodesic on the Grassmann man-
ifold connecting the source and target domains. [28] proposed to jointly learn domain-
adaptive features and the classifiers on the target domain using an information-theoretic mea-
sure. [29] proposed an approach based on the parallel transport to incrementally learning the
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intermediate domains. [5, 14, 19, 20] attempted to match the distributions of the source and
target samples by domain sample re-weighting and feature matching.

Semi-supervised DA methods mainly focus on using samples with labels in the target do-
main to reduce the differences in data distribution [9, 14, 19, 23, 25, 26, 32]. Transformation-
based methods [18, 26] learn linear or nonlinear transformations such that samples of the
same class from different domains become closer. Classifier-based methods [3, 4, 17, 32]
adapt the Support Vector Machine (SVM) trained in the source domain to correctly classify
labeled target samples. A survey on the visual domain adaptation could be found in [24].

3 Domain Adaptive Dictionary Learning

Let X s ∈ Rd×Ns , X t ∈ Rd×Nt be the feature representations of source and target data respec-
tively, where d is the feature dimension, Ns and Nt are the number of samples in the two
domains. The feature representations of recovered source and target data in the k-th in-
termediate domain are denoted as Xk

s ∈ Rd×Ns and Xk
t ∈ Rd×Nt respectively. The common

dictionary is denoted as DC, whereas source-specific and target-specific dictionaries are de-
noted as D0, Dt respectively. Similarly, we use Dk,k = 1...N to denote the domain-specific
dictionary for the k-th domain, where N is the number of intermediate domains. We set all
the dictionaries to be of the same size ∈ Rd×n.

Our objective is to learn the common dictionary and a set of domain-specific dictionaries
for generating intermediate domains. Starting from D0 in the source domain, we sequen-
tially learn the intermediate domain-specific dictionaries {Dk}N

k=1 to gradually reduce the
reconstruction error of the target data. Our domain-adaptive dictionary learning approach
(DADL) consists of three steps: (1) Dictionary initialization. At the beginning, we first learn
the common dictionary DC and two domain-specific dictionaries D0, Dt for the source and
target domains respectively. (2) Domain-adaptive sparse coding. At the k-th step, we learn
domain-adaptive sparse codes of target data and recover the feature representations of target
data in the k-th domain. (3) Dictionary updating. We update the current domain-specific
dictionary Dk to find the next domain-specific dictionary Dk+1 by further minimizing the
residual error in representing the target data. We alternate between dictionary updating and
sparse coding steps until the stopping criteria is satisfied.

3.1 Dictionary Learning in Source and Target Domains
At the beginning, we learn the common dictionary DC, source-specific dictionaries D0 and
target-specific dictionary Dt . Given source and target data X s and X t , we solve for DC by
minimizing the reconstruction error of both source and target data as follows:

min
DC ,Z0,Zt

||X s−DCZ0||2F + ||X t −DCZt ||2F s.t. ∀i, ‖z0
i ‖0 ≤ T,‖zt

i‖0 ≤ T (1)

where Z0 = [z0
1...z

0
Ns
] ∈ Rn×Ns ,Zt = [zt

1...z
t
Nt
] ∈ Rn×Nt are sparse representations of X s and

X t respectively, T specifies the sparsity that each sample has fewer than T dictionary atoms
(columns) in its decomposition.

Given the learned DC and corresponding sparse codes Z0 and Zt , we learn domain-
specific dictionaries D0 and Dt by further reducing the reconstruction error of the source
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and target data. The objective function for learning D0 and Dt is given as follows:

min
D0,Γ0
‖X s−DCZ0−D0

Γ
0‖2

F +λ‖D0DCT‖2
F s.t. ∀i, ‖z0

i ‖0 +‖α0
i ‖0 ≤ T (2)

min
Dt ,Γt
‖X t −DCZt −Dt

Γ
t‖2

F +λ‖DtDCT‖2
F s.t. ∀i, ‖zt

i‖0 +‖α t
i ‖0 ≤ T (3)

where Γ
0 = [α0

1 ...α
0
Ns
] ∈ Rn×Ns and Γ

t = [α t
1...α

t
Nt
] ∈ Rn×Nt are sparse representations of

X s and X t with respect to D0 and Dt , and λ is the regularization parameter. The first term
in both (2) and (3) is the reconstruction error of domain data using both the common dic-
tionary and corresponding domain-specific dictionary. The second term is the inner prod-
uct of the atoms from different dictionaries, which encourages DC to be incoherent to the
domain-specific dictionaries. This incoherence term minimizes the correlation between DC

and {D0,Dt}, thus it enables our approach to exploit domain-shared features and domain
changes separately. We describe the optimization of the objective functions (2) and (3) in
supplementary materials.

3.2 Domain-adaptive Sparse Coding
At the k-th step, assume we have already generated (k-1) intermediate domains and domain-
specific dictionaries denoted as {X i

t}k−1
i=1 and {Di}k−1

i=1 respectively. Now given a newly ob-
tained domain-specific dictionary Dk for the k-th domain, we want to obtain sparse repre-
sentations of target data X t in the k-th domain. In order to achieve this goal, we not only
reconstruct X t using dictionaries from the k-th domain, but also reconstruct the recovered
target data X i

t in each intermediate domain using dictionaries from that domain. Moreover,
we regularize the sparse representation of X s, X t and X i

t to be the same. This regularization
step ensures that the sparse representations of target data across all available domains are
the same (i.e. domain-adaptive). We solve for domain-adaptive sparse codes across all the
available domains as follows:

Zk,Γk = argmin
Z,Γ

‖X t −DCZ−Dk
Γ‖2

F +
k−1

∑
i=0
‖X i

t −DCZ−Di
Γ‖2

F +‖X t −DCZ−Dt
Γ‖2

F

s.t. ∀i,‖zi‖0 +‖αi‖0 ≤ T

(4)

where Zk = [zk
1...z

k
Nt
],Γk = [αk

1 ...α
k
Nt
] are the solved sparse representations of target data in

the k-th domain, X i
t = DCZi +DiΓi are the recovered feature representations of target data

in the i-th domain obtained in previous iteration steps. The objective function in (4) has two
terms:

1. The first term is the reconstruction error of target data when encoded using dictionaries
from the k-th domain. This term is called domain shifting term, because it adapts
dictionaries in the k-th domain to better represent the target data.

2. The second term in (4) sums the reconstruction errors of recovered feature representa-
tions of target data in all the intermediate domains. The last term is the reconstruction
error of target data in the target domain. These two terms are called domain adaptive
terms. This is because we regularize both X t and X i

t to have the same sparse codes.
It means that feature representations of recovered target data in different domains will
have the same sparse codes when encoded using dictionaries from each domain. This
regularization will guarantee that sparse codes are domain-adaptive, such that the do-
main changes are encoded only in domain-specific dictionaries.
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The above objective function (4) could be rewritten as follows:

Zk,Γk = argmin
Z,Γ

‖X̃− D̃ [ Z Γ ]T ‖2
F (5)

where X̃ =
[
XT

t ,X
T
t ,X

0
t

T
, ...,Xk−1

t
T
]T

and D̃ =

[
Dt T ,DkT

,D0T
, ...,Dk−1T

DcT ,DcT ,DcT , ...,DcT

]T

. We can

solve (5) as a LASSO problem to compute the sparse codes as in [21]. Then we recover the
feature representations of target data in the k-th domain Xk

t as follows: Xk
t = DCZk +DkΓ

k.

3.3 Domain-specific Dictionary Updating
After sparse coding at the k-th step, we will update Dk to find the next domain-specific
dictionary Dk+1 by further reducing the reconstruction error of target data in the k-th domain.
Let Jk denote the target reconstruction residue in the k-th domain, which is computed as
follows:

Jk = X t −DCZk−Dk
Γ

k (6)
where Zk and Γ

k are the sparse codes obtained for reconstructing X t in the k-th step. We
further reduce the target reconstruction residue Jk by adjusting Dk by ∆Dk ∈ Rd×n, which is
solved from the following problem:

min
∆Dk
‖Jk−∆Dk

Γ
k‖2

F +η‖∆Dk‖2
F (7)

The objective function in (7) has two terms. The first term ensures that the adjustment ∆Dk

will further reduce the target reconstruction residue Jk. While the second term penalizes the
abrupt changes between two adjacent domain-specific dictionaries so that the intermediate
domains smoothly adapt to the target domain. The parameter η controls the balance between
these two terms. Since the problem in (7) is a ridge regression problem, we solve for ∆Dk

by setting the first derivative to be zeros as in [22] and obtain:

∆Dk = Jk
Γ

kT
(ηI +Γ

k
Γ

kT
)−1 (8)

where I ∈ Rn×n is the identity matrix. The next domain-specific dictionary Dk+1 is obtained
as: Dk+1 = Dk +∆Dk. In addition, we normalize each column in Dk+1 to be a unit vector.

Proposition 1. The residue Jk in (6) is non-increasing with respect to DC, Dk, ∆Dk and
corresponding sparse codes Zk,Γk, i.e. ‖Jk−∆DkΓ

k‖2
F ≤ ‖Jk‖2

F .

The non-increasing property of the residue Jk ensures that the source-specific dictionary
D0 gradually adapts to the target-specific dictionary Dt through a set of intermediate domain-
specific dictionaries Dk. The proof is given in the supplementary material.

After the domain-specific dictionary update, we increase k by 1, and alternate between
the sparse coding step in section 3.2 and the dictionary updating step in section 3.3 until the
stopping criteria is reached. We summarize our approach in Algorithm 1.

3.4 Derivation of New Features for Domain Data
Until now we have obtained the common dictionary DC, domain-specific dictionaries Dk,k ∈
[0,N]. The transition path made up of Dc and the set of domain-specific dictionaries Dk mod-
els the domain shift. We will make use of it to derive new domain-adaptive representations
for source and target data.

Citation
Citation
{Mairal, Bach, Ponce, and Sapiro} 2010

Citation
Citation
{Ni, Qiu, and Chellappa} 2013



XU et al.: DOMAIN ADAPTIVE DICTIONARY LEARNING 7

Algorithm 1 Our DADL framework
1: Input: source data X s , target data X t , sparsity level T , parameter λ , η , stopping threshold δ

2: Output: DC , D0 and Dt

3: compute DC using (1)
4: compute D0, Dt by solving the objective function in (2) and (3).
5: k = 0
6: while stopping criteria is not reached do
7: compute domain-adaptive sparse codes Zk , Γ

k using equation (4)
8: compute the reconstruction error Jk using equation (6).
9: compute the adjustment ∆Dk using equation (8)

10: Dk+1← Dk +∆Dk

11: normalize Dk+1 to have unit atoms.
12: Xk+1

t ← DCZk +DkΓ
k

13: k← k+1
14: Check the stopping criteria ‖∆Dk‖F ≤ δ

15: end while
16: Final Output: DC , Dk,k ∈ [0,N] and Dt .

Since the recovered feature representations of target data Xk
t ,k ∈ [0,N] in all intermediate

domains are already available, we first recover feature representations of source data Xk
s ,k ∈

[0,N] in each intermediate domain. We iteratively recover Xk
s in a similar way as Xk

t . The
only difference is that all the dictionaries are already learned and fixed during the learning
of Xk

s . Specifically, at the k-th iterative step, we obtain the sparse representations of source
data that are adaptive across all domains by solving the following problem:

Zk
s ,Γ

k
s = argmin

Z,Γ
‖X s−DCZ−Dt

Γ‖2
F +

k−1

∑
i=1
‖X i

s−DCZ−Di
Γ‖2

F s.t.∀i, ‖zi‖0 +‖αi‖0 ≤ T (9)

where Zk
s = [zk

s1
...zk

sNs
],Γk

s = [αk
s1
...αk

sNs
] are sparse representations of source data in the k-th

domain, X i
s = DCZi

s +DiΓi
s are recovered feature representations of source data in the i-th

domain obtained in previous iteration steps. The objective function in (9) consists of two
terms. The first term is the reconstruction error of source data using dictionaries from the
target domain while the second term is the sum of reconstruction error of recovered feature
representations of source data in all intermediate domains. Similarly, we enforce both X0

s
and X i

s to have the same sparse codes. After sparse coding in the k-th step, we recover the
feature representations of source data in the k-th domain as follows: Xk

s = DCZk
s +DkΓ

k
s .

We use the sparse codes obtained in the last iterative step to derive the new feature
representations for the source and target data. The new augmented feature representation
of source and target data are X̃ s = [X̃0

s , ..., X̃
N
s ] and X̃ t = [X̃0

t , ..., X̃
N
t ] respectively, where

X̃ i
s = DCZN

s +DiΓN
s and X̃ i

t = DCZN
t +DiΓN

t and ZN
s , ZN

t , Γ
N
s , Γ

N
t are the sparse codes ob-

tained in the last iterative step where k = N. The final stage of recognition across all the
domains is performed using an SVM classifier trained on new feature vectors after dimen-
sion reduction via the Principal Component Analysis (PCA).

4 Experiments

4.1 Object Recognition
We evaluate our methods for cross-domain object recognition on the benchmark office dataset
introduced in [26]. We selected 2533 images from 10 object classes common to four differ-
ent domains i.e. Caltech, Amazon, DSLR, Webcam as in [13] for our experiments. Image
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Methods C→A C→D C→W A→C A→W A→D W→C W→A W→D D→C D→A D→W
K-SVD [1] 38.0 19.8 21.3 33.9 23.5 22.3 17.1 16.7 46.5 22.6 14.3 46.8
GFK [13] 40.4 41.1 40.7 37.9 35.7 36.3 29.3 35.5 85.9 30.3 36.1 79.1
SA [12] 39.0 39.6 23.9 35.3 38.6 38.8 32.3 37.4 77.8 38.9 38.0 83.6

SIDL [22] 43.3 42.3 36.3 40.4 37.9 33.3 36.3 38.3 86.2 36.1 39.1 86.2
TJM [20] 46.7 44.6 38.9 39.4 42.0 45.2 30.2 30.0 89.2 31.4 32.8 85.4
DIP [5] 50.0 49.0 47.6 43.3 46.7 42.8 37.0 42.5 86.4 39.0 40.5 86.7
SIE [6] 51.9 52.5 47.3 44.5 48.6 43.2 39.9 44.1 89.3 38.9 39.1 88.6
Ours 54.7 53.7 48.1 45.3 44.5 45.8 40.1 41.8 93.6 39.3 41.7 92.4

Table 1: Object classification accuracies of different approaches on the benchmark dataset [26].
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Figure 2: The effects of dictionary size, average reconstruction error and stopping threshold δ

on office datasets [26].

representation is based on SURF [7] features similar to those in [13, 26]. Specifically, all the
images were firstly resized to have the same width and converted to grayscale. Second, the
SURF detector [7] was used to extract local scale-invariant interest points. Then a random
subset of these interest point descriptors was selected and quantized to 800 visual words by
k-means clustering. Each image was represented by a 800-dimensional histogram.

Following the protocol in [26], we selected 8 labeled images per category when Webcam,
DSLR and Caltech are used as source domains, and 20 labeled images when Amazon is the
source domain. We ran 20 different trials corresponding to different selections of labeled
source data and report the average recognition accuracy in Table 1. It is seen that our method
achieves the best performance for a majority of combinations of source and target domains.
In particular, our method consistently outperforms SIDL [22] which is most similar to ours.
This is because [22] only regularizes two adjacent domains to have the identical pairwise
sparse codes and the learned dictionaries do not fully capture the domain changes. However,
our method encodes the domain changes in the domain-specific dictionaries by encouraging
feature representation of different domain data to have the same domain-adaptive sparse
codes.

In order to evaluate the effect of dictionary size on our approach, we choose two different
combinations of source and target domains and plot the results in Figure 2(a). Our approach
gains significant improvement over K-SVD [1] since we bridge the domain shift by gener-
ating intermediate domains. Our approach also outperforms SIDL [22] by a large margin of
4.5%. This is because we learn more compact and reconstructive dictionaries to represent
target data, which leads to much lower reconstruction errors, as demonstrated in Figure 2(b).
The dictionary size is set to be 128 or 256 based on the source sample size in all the experi-
ments. We also evaluate our approach with varying values of stopping threshold δ as shown
in Figure 2(c). It can be seen that both [22] and the proposed approach converge in fewer
steps with increasing value of δ , thus generates fewer number of intermediate domains. In
addition, our approach is insensitive to the regulization parameter η , which is chosen from
1500 to 2500 throughout all the experiments. The final dimensionality after PCA is between
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Figure 3: Recovered face images of a target face image along the intermediate domains. The
first image is the original target face image, the second image is the component of the recovered face
image corresponding to the common dictionary. The remaining six images are the components of the
recovered face images corresponding to domain-specific dictionaries.

(a) Pose Variation

c11 c29 c05 c37 average
Ours 86.7 98.5 95.6 89.7 92.6
[22] 76.5 98.5 98.5 88.2 90.4
[20] 83.8 98.5 95.6 82.4 90.1
[13] 63.2 92.7 92.7 76.5 81.3
[16] 78.0 91.0 93.0 89.0 87.8
[1] 48.5 76.5 80.9 57.4 65.8

(b) Gaussian Blur Kernels
σ 2 5 7

Ours 88.9 82.7 80.5
[22] 84.0 78.2 76.5
[20] 67.4 64.4 63.8
[13] 81.1 75.9 72.1
[2] 69.1 61.6 55.3
[8] 72.4 24.8 17.3
[1] 49.1 34.6 29.2

(c) Motion Blur Kernels
L 3 7 13

Ours 97.9 89.7 77.4
[22] 95.6 86.5 75.7
[20] 71.8 69.4 60.0
[13] 91.3 84.9 70.7
[2] 81.8 77.4 54.5
[8] 82.3 70.7 35.1
[1] 85.0 56.5 25.9

Table 2: Recognition accuracies of different approaches for the CMU-PIE dataset [30] across
pose variation, Gaussian blur kernels and motion blur kernels respectively. Each column in (a)
corresponds to a non-frontal pose. The columns in (b) and (c) correspond to Gaussian kernels with
different values of the standard deviation σ or motion blur kernels with different values of length L.

60 and 140.

4.2 Face Recognition across Pose and Blurs
We evaluate our methods for face recognition across pose and blur variation on CMU-PIE
dataset [30]. This dataset is a controlled face dataset of 68 subjects with a total of 41,368
images. Each subject has 13 images under 9 different poses, 21 different illuminations and
4 different expressions. We choose 5 different poses of face images ranging from frontal to
±45o. The four non-frontal poses are denoted as c05 (yaw about −22.5o), c29 (yaw about
22.5o), c11 (yaw about 45o) and c37 (yaw about −45o).

4.2.1 Benefits of the Common Dictionary and Domain-specific Dictionaries
We first demonstrate the benefits of the separation of the common dictionary from domain-
specific dictionaries. Specifically, we selected frontal face images as the source domain and
face images from pose c11 (yaw about 45o) as the target domain. We chose a face image from
the target domain and recovered feature representations of this face image in intermediate
domains using the proposed method. Since the recovered face images have two components
corresponding to the common dictionary and domain-specific dictionaries respectively, we
visualize the two components of recovered face images separately in Figure 3. It can be seen
that the components corresponding to domain-specific dictionaries in intermediate domains
gradually adapt from the frontal face to non-frontal faces. This demonstrates that the domain-
specific dictionaries have the ability to encode the domain shift due to different yaw angles.

4.2.2 Face Recognition across Poses and Blurs

The second experiment we carried out is face recognition across pose variation. We selected
the front-illuminated face images to be the labeled source domain. Face images with the
same illumination condition under four different non-frontal poses formed the different target
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domains. The task is to classify the unlabeled face images from the target domain. As shown
in Table 2(a), our method outperforms the other methods except the case where the target
pose is c05 in [22]. It is interesting to note that when the pose variations are large, [16]
which relies on a generic training set to build pose model has higher average recognition
accuracies than the unsupervised DA in [13]. However, our method demonstrates improved
performances over both [16] and other domain adaptation approaches [13, 20, 22] when pose
variations are large.

We also evaluated our approach for face recognition across blur and illuminations. For
a fair comparison, we followed the protocol presented in [22] to construct source and target
domains. Specifically, we choose 34 subjects under first 11 illumination conditions to com-
pose the source domain. The target domain was formed by the remaining images acquired
under 10 other illumination conditions. We synthesized the domain shift by applying two
different types of blur kernels to the target data: 1) Gaussian blur kernel with different stan-
dard deviations from 2 to 7, and 2) motion blur kernel with different lengths from 3 to 13
along Θ = 135o. In summary, the domain shift consist of two components. The first is a
change in illumination direction and the second component is due to blur.

Tables 2(b) and (c) show the accuracies of different methods for face recognition across
Gaussian blur and motion blur respectively. The proposed DADL method consistently achieves
the best performance. In addition, since both illumination and blur variations exist in the do-
main shift, LPQ [2] which is only blur robust and albedo [8] which is only illumination
insensitive are not able to handle all the domain changes. Moreover, our method outper-
forms [22], which demonstrates the benefits of learning both common and domain-specific
dictionaries.

5 Conclusion
We presented a novel domain adaptive dictionary learning framework for unsupervised do-
main adaptation. We first learned a common dictionary to recover features shared by all do-
mains. Then we acquired a set of domain-specific dictionaries, which generates a transition
path from source to target domains. The common dictionary is essential for reconstruction
while domain-specific dictionaries are able to bridge the domain shift. Final feature rep-
resentations are recovered by utilizing both common and domain-specific dictionaries. We
extensively evaluated our approach on two benchmark datasets and the experimental results
clearly confirmed the effectiveness of our approach.
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